Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Cyanobenzyl)-4-methylpyridinium bis(benzene-1,2-dithiolato)nickelate(III)

Guang-Xiang Liu

School of Chemistry and Chemical Engineering, Anging Teachers' College, Anging 246003, People's Republic of China Correspondence e-mail: njuliugx@126.com

Received 30 April 2007; accepted 15 May 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.010 Å; R factor = 0.060; wR factor = 0.078; data-to-parameter ratio = 14.2.

The asymmetric unit of the title compound, (C₁₄H₁₃N₂)- $[Ni(C_6H_4S_2)_2]$, contains two cations, one anion and two halfanions. One of the half-anions has Ni on a twofold rotation axis, while the other has Ni on a centre of symmetry. In the anions, the Ni ions are surrounded by four S atoms in a distorted square-planar geometry. In the crystal structure, the anions exhibit two different packing modes by stacking in face-to-face and side-by-side fashions.

Related literature

For general background, see: de Caro et al. (2004); Ray et al. (2005); Liu (2007); Liu et al. (2005); Wang et al. (2006). For related literature, see: Sellmann et al. (1991); Xie et al. (2002).

Experimental

Crystal data (C₁₄H₁₃N₂)[Ni(C₆H₄S₂)₂] $M_r = 548.40$ Monoclinic, C2/c a = 42.344 (3) Å b = 7.2455 (6) Å c = 32.768 (2) Å $\beta = 96.480 \ (5)^{\circ}$

 $V = 9988.9 (13) \text{ Å}^3$ Z = 16 Mo $K\alpha$ radiation $\mu = 1.13 \text{ mm}^{-1}$ T = 294 (2) K $0.20 \times 0.12 \times 0.10 \text{ mm}$ $R_{\rm int} = 0.113$

27982 measured reflections

8530 independent reflections

3392 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.806, T_{\max} = 0.896$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	599 parameters
$wR(F^2) = 0.078$	H-atom parameters constrained
S = 0.89	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
8530 reflections	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni1-S6	2.1337 (16)	Ni2-S2	2.1408 (17)
Ni1-S5	2.1477 (14)	Ni2-S1	2.1424 (16)
Ni2-S4	2.1400 (16)	Ni3-S7	2.1424 (15)
Ni2-S3	2.1405 (17)	Ni3-S8	2.1470 (14)
S6-Ni1-S6 ⁱ	166.03 (9)	\$3-Ni2-\$2	178.93 (8)
\$6-Ni1-\$5	91.45 (6)	S4-Ni2-S1	178.82 (6)
\$6 ⁱ -Ni1-\$5	89.32 (6)	S3-Ni2-S1	88.26 (6)
\$5-Ni1-\$5 ⁱ	173.64 (10)	S2-Ni2-S1	91.66 (6)
S4-Ni2-S3	91.93 (7)	S7-Ni3-S8 ⁱⁱ	91.76 (6)
\$4-Ni2-\$2	88.17 (6)	\$7-Ni3-\$8	88.25 (6)

Symmetry codes: (i) -x, y, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Table 2		
Hydrogen-bond geometry (A	Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8B\cdots S4^{i}$	0.97	2.846	3.721 (3)	150.63
Symmetry code: (i) -	_r _ 1 _ v _ 1 _	z ⊥ 1		

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of the Education Committee of Anhui Province, China (project Nos. 2003kj253 and 2003jq153).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2244).

References

- Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caro, D. de, Alves, H., Almeida, M., Caillieux, S., Elgaddari, M., Faulmann, C., Malfant, I. & Senocq, F. (2004). J. Mater. Chem. 14, 2801-2805.
- Liu, G.-X. (2007). Acta Cryst. E63, 0704-0706.
- Liu, G. X., Ren, X. M., Kremer, P. K. & Meng, Q. J. (2005). J. Mol. Struct. 743, 125-133.
- Ray, K., Weyhermuller, T., Neese, F. & Wieghardt, K. (2005). Inorg. Chem. 44, 5345-5360.
- Sellmann, D., Funfgelder, S., Knoch, F. & Moll, M. (1991). Z. Naturforsch. Teil B. 46, 1601-1608.
- Wang, P.-F., Liu, G.-X. & Chen, Y.-C. (2006). Acta Cryst. E62, 03256-03258.

Xie, J. L., Ren, X. M., Song, Y., Zhang, W. W., Liu, W. L., He, C. & Meng, Q. J. (2002). Chem. Commun. pp. 2346-2347.

Acta Cryst. (2007). E63, m1707 [doi:10.1107/S1600536807023847]

1-(4-Cyanobenzyl)-4-methylpyridinium bis(benzene-1,2-dithiolato)nickelate(III)

G.-X. Liu

Comment

Since their discovery in 1963, square planar bis(benzene-1,2-dithiolato)metal complexes have received considerable attention due to their interesting and often unusual electronic structures. It has been established that the square planar complexes $[M(L)_2]^2^-$, $[M(L)_2]^-$, and $[M(L)_2]^0$ (where M = Ni, Pt) form a three membered electron-transfer series, where the neutral species and the dianionic forms are diamagnetic (S = 0), whereas the monoanions are paramagnetic (S = 1/2) (de Caro *et al.*, 2004; Ray *et al.*, 2005). In our previous research using benzylpyridinium derivatives ($[RBzPy]^+$) as the counter-cation of TCNQ⁻ (where TCNQ = 7,7,8,8-tetracyanoquinodimethanide), a series of ion-pair compounds with segregated columnar stacks of cations and anions has been prepared (Liu, 2007; Liu *et al.*, 2005; Wang *et al.*, 2006). The quasi one-dimensional magnetic nature of these compounds was attributed to intermolecular-orbital interactions within the anionic columns. As an extension of our work on this series of complexes, we herein report the crystal structure of the title compound, (I).

The asymmetric unit of (I), contains two $(C_{14}H_{13}N_2)^+$ cations, one and two halves centrosymmetric $[Ni(C_6H_4S_2)_2]$ anions. In the anions, the Ni ions are surrounded by four S atoms in a distorted square-planar geometry. The dihedral angle between (Ni1/S5/S6/C41/C46) and (Ni1/S5A/S6A/C41A/C46A) planes is 18.98 (2)° [symmetry code (A): -x, y, 1/2 - z]. It is peculiar and interesting. The Ni—S bond lengths and S—Ni—S bond angles (Table 1) are in agreement with the corresponding values in analogous complexes (Sellmann *et al.*, 1991; Xie *et al.*, 2002). The cations have A-shaped conformations with the dihedral angles of A/B = 65.03 (3), A/C = 46.37 (4), B/C = 86.96 (4) ° and D/E = 60.62 (3), D/F = 59.72 (3), E/F = 83.56 (4) ° between A (C5/C8/N1), B (C2-C7), C (N1/C9-C13) and D (C19/C22/N2), E (C16-C21), F (N2/C23-C28) planes.

In the crystal structure, the packing of the two anions is different (Fig. 2). The Ni1, Ni3-containing anions stack in a face-to-face fashion with an alternating arrangement of anions and cations, such that the pyridine ring of the cation lies above the benzene ring of the anion. The shortest distance between the adjacent Ni^{III} ions is 7.245 (2) Å. The Ni2-containing anions stack in a side by side fashion with C—H…S interactions (Table 2).

Experimental

Benzene-1,2-dithiol (142 mg, 1.0 mmol) was added to a solution of sodium metal (46 mg, 2.0 mmol) in absolute ethanol (25 ml), under nitrogen atmosphere at room temperature, and then a solution of NiCl₂·6H₂O (120 mg, 0.5 mmol) in ethanol (25 ml) was added, resulting in a mixture turning a muddy red–brown color. Following this, [NCBzPyCH₃]Br (289 mg, 1.0 mmol) was added and the mixture allowed to stand with stirring for 1 h, and then stirred for an additional 24 h in air. The color of the mixture gradually turned green, indicating oxidation from a dianionic species to the more stable monoanionic form. The precipitate was washed with absolute ethanol and diethyl ether and then dried. The crude product was recrystallized twice from dichloromethane to give the title compound (yield; 241 mg, 69%, m.p. 483–485 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xUeq(C)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The symmetry codes A in Ni1 and Ni3 anions are (-x, y, 1/2 - z) and (1/2 - x, 1/2 - y, 1 - z), respectively.

Fig. 2. A packing diagram of (I). The C-H···S interactions are shown as dashed lines.

1-(4-Cyanobenzyl)-4-methylpyridinium bis(benzene-1,2-dithiolato)nickelate(III)

Crystal data	
$(C_{14}H_{13}N_2)[Ni(C_6H_4S_2)_2]$	$F_{000} = 4528$
$M_r = 548.40$	$D_{\rm x} = 1.459 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 1320 reflections
a = 42.344 (3) Å	$\theta = 2.9 - 16.5^{\circ}$
<i>b</i> = 7.2455 (6) Å	$\mu = 1.13 \text{ mm}^{-1}$
c = 32.768 (2) Å	T = 294 (2) K
$\beta = 96.480 \ (5)^{\circ}$	Prism, dark green
$V = 9988.9 (13) \text{ Å}^3$	$0.20\times0.12\times0.10~mm$
Z = 16	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	8530 independent reflections
Radiation source: sealed tube	3392 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.113$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan	$h = -50 \rightarrow 47$

(SADABS; Bruker, 2000)	
$T_{\min} = 0.806, \ T_{\max} = 0.896$	$k = -8 \rightarrow 7$
27982 measured reflections	<i>l</i> = −36→36

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2)]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.89	$(\Delta/\sigma)_{\rm max} = 0.001$
8530 reflections	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
599 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
Duine me atom aits la satisme atmesterne incomiant dinast	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.0000	0.56508 (13)	0.2500	0.0602 (3)
Ni2	0.125597 (16)	0.62664 (10)	0.12628 (2)	0.0551 (2)
Ni3	0.2500	0.2500	0.5000	0.0615 (3)
S1	0.11139 (3)	0.88755 (19)	0.09943 (4)	0.0620 (4)
S2	0.09055 (4)	0.48396 (19)	0.08584 (5)	0.0667 (5)
S3	0.16124 (4)	0.7690 (2)	0.16585 (5)	0.0700 (5)
S4	0.13900 (3)	0.3664 (2)	0.15386 (4)	0.0641 (4)
S5	0.04314 (4)	0.5815 (2)	0.22143 (4)	0.0647 (5)
S6	0.02601 (4)	0.5293 (2)	0.30913 (4)	0.0737 (5)
S7	0.22258 (4)	0.1943 (2)	0.44230 (4)	0.0718 (5)
S8	0.29206 (4)	0.19526 (19)	0.47107 (5)	0.0646 (5)
N1	0.31857 (14)	0.6691 (6)	0.45220 (15)	0.0574 (13)
N2	0.06481 (13)	1.1024 (6)	0.20015 (15)	0.0563 (13)
N3	0.17638 (18)	0.9953 (13)	0.3108 (2)	0.177 (4)
N4	-0.06790 (18)	0.6563 (12)	0.0635 (2)	0.162 (3)

C1	0.1980 (2)	0.9276 (13)	0.3264 (2)	0.118 (3)
C2	0.2261 (2)	0.8448 (13)	0.3481 (2)	0.082 (2)
C3	0.22698 (19)	0.6628 (13)	0.3573 (2)	0.098 (3)
Н3	0.2091	0.5914	0.3494	0.118*
C4	0.2529 (2)	0.5804 (10)	0.3775 (2)	0.087 (2)
H4	0.2526	0.4552	0.3837	0.105*
C5	0.27987 (16)	0.6851 (10)	0.38877 (17)	0.0586 (17)
C6	0.27969 (15)	0.8707 (9)	0.37946 (17)	0.0627 (17)
H6	0.2976	0.9424	0.3871	0.075*
C7	0.25306 (19)	0.9490 (9)	0.35900 (19)	0.072 (2)
H7	0.2531	1.0738	0.3524	0.087*
C8	0.30959 (14)	0.5990 (7)	0.40965 (16)	0.0659 (17)
H8A	0.3066	0.4664	0.4107	0.079*
H8B	0.3269	0.6229	0.3934	0.079*
С9	0.29658 (14)	0.6769 (7)	0.4786 (2)	0.0640 (18)
Н9	0.2755	0.6482	0.4698	0.077*
C10	0.30535 (18)	0.7270 (7)	0.5183 (2)	0.071 (2)
H10	0.2899	0.7319	0.5363	0.085*
C11	0.3359 (2)	0.7703 (8)	0.5326 (3)	0.074 (2)
C12	0.35750 (19)	0.7611 (8)	0.5045 (3)	0.084 (2)
H12	0.3787	0.7897	0.5127	0.101*
C13	0.34874 (17)	0.7113 (8)	0.4649 (2)	0.073 (2)
H13	0.3639	0.7065	0.4465	0.088*
C14	0.34560 (16)	0.8237 (8)	0.57622 (19)	0.102 (2)
H14A	0.3680	0.8039	0.5828	0.152*
H14B	0.3342	0.7499	0.5940	0.152*
H14C	0.3408	0.9517	0.5800	0.152*
C15	-0.0476 (2)	0.7422 (13)	0.0787 (3)	0.124 (3)
C16	-0.0223 (2)	0.8514 (12)	0.09821 (19)	0.076 (2)
C17	0.00624 (19)	0.7662 (8)	0.11170 (19)	0.0665 (19)
H17	0.0088	0.6403	0.1077	0.080*
C18	0.03053 (14)	0.8689 (9)	0.13096 (16)	0.0612 (17)
H18	0.0498	0.8122	0.1400	0.073*
C19	0.02699 (17)	1.0549 (9)	0.13723 (16)	0.0556 (17)
C20	-0.0010 (2)	1.1392 (9)	0.1235 (2)	0.081 (2)
H20	-0.0036	1.2654	0.1272	0.097*
C21	-0.02549 (17)	1.0359 (12)	0.1041 (2)	0.088 (2)
H21	-0.0446	1.0933	0.0948	0.106*
C22	0.05457 (14)	1.1652 (8)	0.15794 (17)	0.0750 (19)
H22A	0.0723	1.1558	0.1418	0.090*
H22B	0.0485	1.2941	0.1586	0.090*
C23	0.04440 (14)	1.1099 (7)	0.2284 (2)	0.0643 (17)
H23	0.0237	1.1489	0.2208	0.077*
C24	0.05327 (16)	1.0622 (7)	0.2678 (2)	0.0666 (19)
H24	0.0386	1.0658	0.2869	0.080*
C25	0.08412 (19)	1.0082 (7)	0.2799 (2)	0.0576 (18)
C26	0.09546 (15)	0.9591 (7)	0.32383 (18)	0.092 (2)
H26A	0.1087	0.8512	0.3244	0.137*
H26B	0.0775	0.9347	0.3384	0.137*

H26C	0.1075	1.0600	0.3366	0.137*
C27	0.10478 (18)	0.9985 (7)	0.2500 (3)	0.076 (2)
H27	0.1256	0.9598	0.2568	0.091*
C28	0.09443 (17)	1.0457 (8)	0.2108 (2)	0.0685 (19)
H28	0.1084	1.0383	0.1908	0.082*
C29	0.08084 (13)	0.8376 (9)	0.06148 (16)	0.0535 (15)
C30	0.06495 (15)	0.9756 (8)	0.0381 (2)	0.0685 (19)
H30	0.0707	1.0985	0.0426	0.082*
C31	0.04077 (15)	0.9301 (10)	0.00835 (19)	0.074 (2)
H31	0.0302	1.0234	-0.0072	0.089*
C32	0.03178 (15)	0.7498 (10)	0.0011 (2)	0.082 (2)
Н32	0.0154	0.7214	-0.0193	0.099*
C33	0.04738 (15)	0.6106 (9)	0.02449 (19)	0.0724 (18)
Н33	0.0415	0.4881	0.0197	0.087*
C34	0.07160 (13)	0.6535 (8)	0.05490 (16)	0.0526 (15)
C35	0.18004 (13)	0.5986 (9)	0.19720 (17)	0.0573 (16)
C36	0.16966 (13)	0.4172 (9)	0.19115 (16)	0.0563 (16)
C37	0.18521 (16)	0.2797 (8)	0.2164 (2)	0.074 (2)
H37	0.1786	0.1577	0.2130	0.089*
C38	0.20967 (17)	0.3218 (10)	0.2457 (2)	0.085(2)
H38	0.2196	0.2293	0.2621	0.102*
C39	0.21959 (16)	0.5034 (11)	0.2507 (2)	0.086 (2)
H39	0.2363	0.5324	0.2705	0.103*
C40	0.20502(15)	0.6400 (9)	0.2270 (2)	0.0742 (18)
H40	0.2119	0.7614	0.2307	0.089*
C41	0.07300 (17)	0.5359 (6)	0.2607 (2)	0.0542 (17)
C42	0 1047 (2)	0 5224 (7)	0.2529(2)	0.070 (2)
H42	0.1099	0.5408	0.2263	0.084*
C43	0.12827(17)	0.4822 (8)	0.2200	0.085(2)
H43	0.1493	0.4726	0.2786	0.102*
C44	0.12051 (17)	0.4560 (7)	0.3236 (2)	0.079(2)
H44	0.1363	0.4280	0.3448	0.095*
C45	0.0897(2)	0.4715(7)	0.3313 (2)	0.073(2)
H45	0.0847	0.4551	0.3580	0.088*
C46	0.06564 (16)	0.5109(7)	0.3005 (2)	0.0590 (18)
C47	0.18323(15)	0.2118(7)	0.5005(2) 0.4527(2)	0.0550(10)
C48	0.15871 (19)	0.2710(7) 0.1752(7)	0.42208(19)	0.0505(17)
H48	0.1633	0.1424	0.3959	0.083*
C49	0.1035	0.1871 (8)	0.3301(2)	0.005
H49	0.1115	0.1633	0.4094	0.090*
C50	0.32329 (17)	0.2401 (6)	0.50796 (18)	0.0539 (18)
C51	0.35497(18)	0.2401(0) 0.2307(7)	0.5006 (2)	0.0557(10)
H51	0.3598	0.2307 (7)	0.4745	0.007(2)
C52	0.37907 (16)	0.2653 (7)	0.7730	0.078(2)
H52	0 4001	0.2571	0.5253	0.094*
	0.1001	0.2011	0.0200	0.021

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0747 (9)	0.0539 (7)	0.0541 (7)	0.000	0.0170 (6)	0.000
Ni2	0.0557 (5)	0.0523 (5)	0.0574 (5)	-0.0065 (4)	0.0069 (4)	-0.0029 (4)
Ni3	0.0682 (9)	0.0607 (7)	0.0576 (8)	-0.0042 (6)	0.0156 (6)	0.0002 (5)
S1	0.0613 (11)	0.0554 (10)	0.0674 (11)	-0.0082 (9)	-0.0007 (9)	-0.0025 (8)
S2	0.0686 (13)	0.0552 (10)	0.0733 (12)	-0.0089 (8)	-0.0053 (10)	-0.0027 (8)
S3	0.0744 (13)	0.0597 (11)	0.0725 (12)	-0.0112 (9)	-0.0062 (10)	-0.0029 (9)
S4	0.0635 (12)	0.0553 (10)	0.0717 (11)	-0.0046 (8)	0.0000 (9)	-0.0001 (8)
S5	0.0771 (13)	0.0637 (11)	0.0550 (10)	-0.0004 (9)	0.0154 (9)	0.0043 (8)
S6	0.0834 (14)	0.0861 (13)	0.0541 (11)	0.0030 (9)	0.0185 (10)	0.0024 (8)
S7	0.0742 (13)	0.0874 (13)	0.0560 (11)	-0.0049 (9)	0.0170 (10)	-0.0041 (8)
S8	0.0729 (13)	0.0640 (11)	0.0586 (11)	0.0006 (9)	0.0149 (9)	-0.0025 (8)
N1	0.065 (4)	0.049 (3)	0.062 (4)	0.009 (3)	0.023 (4)	0.008 (2)
N2	0.064 (4)	0.049 (3)	0.056 (4)	-0.007 (3)	0.009 (3)	-0.004 (3)
N3	0.097 (7)	0.267 (10)	0.159 (7)	0.039 (6)	-0.030 (5)	0.070 (6)
N4	0.128 (7)	0.229 (9)	0.125 (6)	-0.074 (6)	-0.003 (5)	-0.019 (6)
C1	0.090 (8)	0.183 (9)	0.079 (6)	0.028 (7)	-0.001 (6)	0.031 (6)
C2	0.072 (7)	0.118 (7)	0.057 (5)	0.003 (6)	0.016 (5)	0.013 (5)
C3	0.082 (7)	0.134 (8)	0.075 (6)	-0.035 (6)	-0.013 (5)	0.002 (5)
C4	0.097 (7)	0.085 (6)	0.080 (6)	-0.027 (6)	0.008 (5)	0.004 (4)
C5	0.061 (5)	0.068 (5)	0.050 (4)	0.006 (4)	0.017 (4)	0.003 (4)
C6	0.067 (5)	0.057 (5)	0.065 (4)	0.004 (4)	0.007 (4)	-0.006 (4)
C7	0.072 (6)	0.080 (5)	0.066 (5)	0.024 (5)	0.012 (4)	0.006 (4)
C8	0.092 (5)	0.061 (4)	0.046 (4)	0.012 (4)	0.013 (4)	-0.003 (3)
C9	0.058 (5)	0.084 (5)	0.052 (5)	0.004 (3)	0.012 (4)	0.010 (4)
C10	0.087 (6)	0.075 (5)	0.053 (5)	0.002 (4)	0.019 (5)	0.008 (4)
C11	0.082 (7)	0.049 (4)	0.087 (7)	0.009 (4)	-0.001 (6)	0.005 (4)
C12	0.075 (7)	0.078 (5)	0.093 (7)	0.002 (4)	-0.011 (6)	-0.012 (4)
C13	0.053 (5)	0.069 (5)	0.100 (7)	0.005 (4)	0.021 (5)	0.003 (4)
C14	0.156 (8)	0.077 (5)	0.065 (5)	-0.002 (5)	-0.016 (5)	-0.011 (4)
C15	0.120 (10)	0.169 (10)	0.082 (7)	-0.052 (7)	0.011 (6)	-0.018 (6)
C16	0.082 (7)	0.100 (7)	0.046 (4)	-0.014 (6)	0.002 (4)	-0.005 (4)
C17	0.078 (6)	0.066 (5)	0.058 (5)	-0.005 (5)	0.018 (4)	0.009 (4)
C18	0.055 (5)	0.071 (5)	0.056 (4)	-0.010 (4)	0.003 (3)	0.009 (4)
C19	0.070 (6)	0.057 (5)	0.039 (4)	-0.007 (4)	0.004 (4)	0.001 (3)
C20	0.089 (6)	0.070 (5)	0.080 (5)	0.025 (5)	-0.004 (5)	-0.006 (4)
C21	0.052 (6)	0.126 (8)	0.083 (6)	0.025 (5)	-0.006 (4)	-0.002 (5)
C22	0.104 (6)	0.072 (5)	0.049 (4)	-0.014 (4)	0.009 (4)	0.008 (3)
C23	0.069 (5)	0.065 (4)	0.060 (5)	0.005 (4)	0.012 (4)	0.001 (4)
C24	0.071 (6)	0.062 (4)	0.068 (5)	0.007 (4)	0.012 (4)	-0.009 (4)
C25	0.081 (6)	0.043 (4)	0.045 (5)	-0.009 (4)	-0.011 (5)	-0.004 (3)
C26	0.127 (7)	0.069 (5)	0.073 (5)	-0.006 (4)	-0.017 (5)	0.011 (4)
C27	0.067 (6)	0.081 (5)	0.076 (6)	-0.005 (4)	-0.005 (5)	0.004 (4)
C28	0.065 (6)	0.067 (5)	0.075 (6)	-0.002 (4)	0.015 (5)	-0.006 (4)
C29	0.042 (4)	0.070 (5)	0.049 (4)	-0.004 (4)	0.005 (3)	0.000 (3)

C30	0.061 (5)	0.076 (5)	0.068 (5)	0.007 (4)	0.007 (4)	0.008 (4)
C31	0.057 (5)	0.098 (6)	0.065 (5)	0.011 (4)	-0.005 (4)	0.003 (4)
C32	0.058 (5)	0.098 (6)	0.088 (6)	-0.006 (5)	-0.004 (4)	-0.020 (5)
C33	0.059 (5)	0.076 (5)	0.081 (5)	-0.002 (4)	0.002 (4)	-0.007 (4)
C34	0.042 (4)	0.064 (4)	0.050 (4)	-0.010 (3)	-0.003 (3)	-0.009 (3)
C35	0.037 (4)	0.075 (5)	0.061 (4)	-0.001 (4)	0.009 (3)	-0.003 (4)
C36	0.049 (4)	0.062 (4)	0.058 (4)	0.003 (4)	0.009 (3)	0.004 (4)
C37	0.074 (6)	0.075 (5)	0.071 (5)	0.012 (4)	0.003 (4)	0.005 (4)
C38	0.074 (6)	0.099 (6)	0.080 (6)	0.014 (5)	-0.005 (4)	0.016 (5)
C39	0.057 (5)	0.117 (7)	0.080 (6)	0.005 (5)	-0.007 (4)	0.004 (5)
C40	0.058 (5)	0.085 (5)	0.077 (5)	-0.004 (4)	-0.005 (4)	-0.009 (4)
C41	0.065 (6)	0.040 (4)	0.058 (5)	0.001 (3)	0.008 (4)	-0.004 (3)
C42	0.085 (7)	0.062 (5)	0.066 (6)	0.008 (4)	0.019 (5)	0.002 (3)
C43	0.084 (7)	0.083 (5)	0.091 (6)	-0.001 (4)	0.021 (6)	-0.005 (4)
C44	0.076 (6)	0.074 (5)	0.085 (6)	0.013 (4)	-0.001 (5)	-0.004 (4)
C45	0.099 (7)	0.059 (4)	0.062 (5)	0.009 (4)	0.011 (5)	0.004 (3)
C46	0.068 (6)	0.049 (4)	0.062 (5)	0.001 (3)	0.014 (4)	-0.001 (3)
C47	0.051 (5)	0.049 (4)	0.068 (5)	-0.004 (3)	0.001 (4)	0.011 (3)
C48	0.083 (6)	0.065 (5)	0.063 (5)	0.000 (4)	0.026 (5)	0.012 (3)
C49	0.081 (6)	0.081 (5)	0.061 (5)	-0.005 (4)	-0.004 (4)	0.010 (4)
C50	0.078 (6)	0.046 (4)	0.039 (5)	0.002 (3)	0.013 (4)	0.006 (3)
C51	0.069 (6)	0.075 (5)	0.054 (5)	0.005 (4)	0.024 (5)	0.003 (3)
C52	0.065 (6)	0.082 (5)	0.086 (6)	-0.010 (4)	0.000 (5)	0.012 (4)

Geometric parameters (Å, °)

Ni1—S6	2.1337 (16)	C19—C20	1.365 (7)
Ni1—S6 ⁱ	2.1338 (16)	C19—C22	1.511 (7)
Ni1—S5	2.1477 (14)	C20—C21	1.374 (8)
Ni1—S5 ⁱ	2.1478 (14)	C20—H20	0.9300
Ni2—S4	2.1400 (16)	C21—H21	0.9300
Ni2—S3	2.1405 (17)	C22—H22A	0.9700
Ni2—S2	2.1408 (17)	С22—Н22В	0.9700
Ni2—S1	2.1424 (16)	C23—C24	1.348 (7)
Ni3—S7	2.1424 (15)	С23—Н23	0.9300
Ni3—S7 ⁱⁱ	2.1424 (15)	C24—C25	1.378 (7)
Ni3—S8 ⁱⁱ	2.1470 (14)	C24—H24	0.9300
Ni3—S8	2.1470 (14)	C25—C27	1.387 (8)
S1—C29	1.728 (6)	C25—C26	1.508 (7)
S2—C34	1.731 (6)	C26—H26A	0.9600
S3—C35	1.741 (6)	С26—Н26В	0.9600
S4—C36	1.719 (6)	С26—Н26С	0.9600
S5—C41	1.732 (6)	C27—C28	1.354 (8)
S6—C46	1.738 (6)	С27—Н27	0.9300
S7—C47	1.742 (6)	C28—H28	0.9300
S8—C50	1.719 (6)	C29—C30	1.387 (7)
N1—C13	1.333 (6)	C29—C34	1.400 (6)
N1—C9	1.342 (6)	C30—C31	1.371 (7)

N1—C8	1.492 (6)	С30—Н30	0.9300
N2—C28	1.328 (6)	C31—C32	1.374 (7)
N2—C23	1.338 (6)	С31—Н31	0.9300
N2—C22	1.474 (6)	C32—C33	1.388 (7)
N3—C1	1.109 (8)	С32—Н32	0.9300
N4—C15	1.129 (8)	C33—C34	1.383 (7)
C1—C2	1.449 (9)	С33—Н33	0.9300
С2—С3	1.352 (9)	C35—C40	1.388 (7)
C2—C7	1.381 (8)	C35—C36	1.393 (7)
C3—C4	1.356 (8)	C36—C37	1.410 (7)
С3—Н3	0.9300	C37—C38	1.364 (7)
C4—C5	1.385 (8)	С37—Н37	0.9300
C4—H4	0.9300	C38—C39	1.386 (7)
C5—C6	1.379 (7)	С38—Н38	0.9300
C5—C8	1.499 (7)	C39—C40	1.363 (7)
C6—C7	1.369 (7)	С39—Н39	0.9300
С6—Н6	0.9300	C40—H40	0.9300
С7—Н7	0.9300	C41—C46	1.386 (7)
С8—Н8А	0.9700	C41—C42	1.400 (8)
C8—H8B	0.9700	C42—C43	1.375 (8)
C9—C10	1.361 (7)	С42—Н42	0.9300
С9—Н9	0.9300	C43—C44	1.387 (7)
C10—C11	1.363 (8)	С43—Н43	0.9300
C10—H10	0.9300	C44—C45	1.360 (7)
C11—C12	1.370 (9)	C44—H44	0.9300
	1.494 (8)	C45—C46	1.381 (8)
C12—C13	1.357 (8)	C45—H45	0.9300
С12—Н12	0.9300	C47—C48	1.385 (7)
С13—Н13	0.9300	$C47-C50^{11}$	1.394 (7)
C14—H14A	0.9600	C48—C49	1.362 (7)
C14—H14B	0.9600	C48—H48	0.9300
C14—H14C	0.9600	C49—C52 ⁱⁱ	1.389 (7)
C15—C16	1.426 (9)	C49—H49	0.9300
C16—C21	1.359 (8)	C50—C51	1.391 (7)
C16—C17	1.384 (8)	C50—C47 ⁱⁱ	1.394 (7)
C17—C18	1.365 (7)	C51—C52	1.362 (8)
С17—Н17	0.9300	С51—Н51	0.9300
C18—C19	1.374 (7)	C52—C49 ⁱⁱ	1.389 (7)
C18—H18	0.9300	С52—Н52	0.9300
S6—Ni1—S6 ⁱ	166.03 (9)	N2—C22—H22A	109.0
\$6—Ni1—\$5	91.45 (6)	C19—C22—H22A	109.0
86 ⁱ —Ni1—85	89.32 (6)	N2—C22—H22B	109.0
S6—Ni1—S5 ⁱ	89.33 (6)	С19—С22—Н22В	109.0
S6 ⁱ —Ni1—S5 ⁱ	91.45 (6)	H22A—C22—H22B	107.8
S5—Ni1—S5 ⁱ	173.64 (10)	N2	121.4 (6)
S4—Ni2—S3	91.93 (7)	N2—C23—H23	119.3
S4—Ni2—S2	88 17 (6)	C24—C23—H23	119.3
01 1112 02	00.17 (0)	021 025 1125	117.5

S3—Ni2—S2	178.93 (8)	C23—C24—C25	120.0 (6)
S4—Ni2—S1	178.82 (6)	C23—C24—H24	120.0
S3—Ni2—S1	88.26 (6)	C25—C24—H24	120.0
S2—Ni2—S1	91.66 (6)	C24—C25—C27	117.7 (7)
S7—Ni3—S7 ⁱⁱ	179.998 (1)	C24—C25—C26	122.0 (7)
S7—Ni3—S8 ⁱⁱ	91.76 (6)	C27—C25—C26	120.3 (7)
S7 ⁱⁱ —Ni3—S8 ⁱⁱ	88.25 (6)	С25—С26—Н26А	109.5
S7—Ni3—S8	88.25 (6)	С25—С26—Н26В	109.5
S7 ⁱⁱ —Ni3—S8	91.75 (6)	H26A—C26—H26B	109.5
S8 ⁱⁱ —Ni3—S8	179.998 (1)	С25—С26—Н26С	109.5
C29—S1—Ni2	105.3 (2)	H26A—C26—H26C	109.5
C34—S2—Ni2	105.2 (2)	H26B—C26—H26C	109.5
C35—S3—Ni2	105.1 (2)	C28—C27—C25	119.7 (7)
C36—S4—Ni2	104.7 (2)	С28—С27—Н27	120.2
C41—S5—Ni1	104.5 (2)	С25—С27—Н27	120.2
C46—S6—Ni1	105.7 (3)	N2-C28-C27	121.4 (6)
C47—S7—Ni3	104.4 (3)	N2-C28-H28	119.3
C50—S8—Ni3	105.4 (2)	С27—С28—Н28	119.3
C13—N1—C9	120.0 (6)	C30—C29—C34	119.5 (6)
C13—N1—C8	120.2 (5)	C30—C29—S1	121.6 (5)
C9—N1—C8	119.6 (6)	C34—C29—S1	118.9 (5)
C28—N2—C23	119.7 (6)	C31—C30—C29	119.8 (6)
C28—N2—C22	120.7 (6)	С31—С30—Н30	120.1
C23—N2—C22	119.5 (6)	С29—С30—Н30	120.1
N3—C1—C2	177.6 (12)	C30—C31—C32	121.4 (6)
C3—C2—C7	118.4 (8)	С30—С31—Н31	119.3
C3—C2—C1	120.9 (9)	С32—С31—Н31	119.3
C7—C2—C1	120.7 (9)	C31—C32—C33	119.4 (7)
C2—C3—C4	122.5 (8)	С31—С32—Н32	120.3
С2—С3—Н3	118.7	С33—С32—Н32	120.3
С4—С3—Н3	118.7	C34—C33—C32	120.1 (7)
C3—C4—C5	119.1 (7)	С34—С33—Н33	119.9
C3—C4—H4	120.4	С32—С33—Н33	119.9
С5—С4—Н4	120.4	C33—C34—C29	119.8 (6)
C6—C5—C4	119.4 (6)	C33—C34—S2	121.3 (5)
C6—C5—C8	119.3 (6)	C29—C34—S2	118.9 (5)
C4—C5—C8	121.2 (7)	C40—C35—C36	120.5 (6)
C7—C6—C5	119.8 (6)	C40—C35—S3	121.5 (5)
С7—С6—Н6	120.1	C36—C35—S3	118.0 (5)
С5—С6—Н6	120.1	C35—C36—C37	117.6 (6)
C6—C7—C2	120.7 (7)	C35—C36—S4	120.3 (5)
С6—С7—Н7	119.6	C37—C36—S4	122.1 (5)
С2—С7—Н7	119.6	C38—C37—C36	121.5 (6)
N1—C8—C5	113.4 (5)	С38—С37—Н37	119.3
N1—C8—H8A	108.9	С36—С37—Н37	119.3
С5—С8—Н8А	108.9	C37—C38—C39	119.5 (7)
N1—C8—H8B	108.9	С37—С38—Н38	120.3
C5—C8—H8B	108.9	С39—С38—Н38	120.3

H8A—C8—H8B	107.7	C40—C39—C38	120.6 (7)
N1—C9—C10	119.5 (6)	С40—С39—Н39	119.7
N1—C9—H9	120.2	С38—С39—Н39	119.7
С10—С9—Н9	120.2	C39—C40—C35	120.3 (7)
C9—C10—C11	122.4 (7)	C39—C40—H40	119.8
С9—С10—Н10	118.8	C35—C40—H40	119.8
C11—C10—H10	118.8	C46—C41—C42	119.1 (7)
C10-C11-C12	116.0 (8)	C46—C41—S5	120.1 (6)
C10-C11-C14	122.4 (8)	C42—C41—S5	120.8 (6)
C12-C11-C14	121.6 (8)	C43—C42—C41	120.6 (7)
C13—C12—C11	121.6 (8)	C43—C42—H42	119.7
C13—C12—H12	119.2	C41—C42—H42	119.7
C11—C12—H12	119.2	C42—C43—C44	119.7 (7)
N1—C13—C12	120.5 (7)	C42—C43—H43	120.2
N1—C13—H13	119.7	C44—C43—H43	120.2
C12—C13—H13	119.7	C45—C44—C43	119.7 (7)
C11—C14—H14A	109.5	C45—C44—H44	120.2
C11—C14—H14B	109.5	C43—C44—H44	120.2
H14A—C14—H14B	109.5	C44—C45—C46	121.7 (7)
C11—C14—H14C	109.5	C44—C45—H45	119.2
H14A—C14—H14C	109.5	C46—C45—H45	119.2
H14B—C14—H14C	109.5	C45—C46—C41	119.3 (7)
N4—C15—C16	179.3 (11)	C45—C46—S6	122.9 (6)
C21—C16—C17	119.4 (7)	C41—C46—S6	117.8 (6)
C21—C16—C15	121.8 (9)	C48—C47—C50 ⁱⁱ	120.4 (6)
C17—C16—C15	118.8 (9)	C48—C47—S7	120.0 (6)
C18—C17—C16	119.3 (7)	C50 ⁱⁱ —C47—S7	119.5 (6)
C18—C17—H17	120.3	C49—C48—C47	120.3 (6)
С16—С17—Н17	120.3	C49—C48—H48	119.9
C17—C18—C19	121.0 (6)	C47—C48—H48	119.9
C17—C18—H18	119.5	C48—C49—C52 ⁱⁱ	120.1 (6)
C19—C18—H18	119.5	C48—C49—H49	119.9
C20—C19—C18	119.7 (6)	C52 ⁱⁱ —C49—H49	119.9
C20—C19—C22	120.7 (7)	C51—C50—C47 ⁱⁱ	117.9 (6)
C18—C19—C22	119.6 (6)	C51—C50—S8	123.3 (5)
C19-C20-C21	1194(7)	$C47^{ii}$ C50 88	118.8 (6)
C19 - C20 - H20	120.3	$C_{47} = C_{50} = S_{50}$	121.5(7)
C21_C20_H20	120.3	C52—C51—H51	110.2
$C_{21} = C_{20} = 1120$	120.5	C50-C51-H51	119.2
C16 C21 H21	110 /		119.2
$C_{10} = C_{21} = H_{21}$	119.4	$C_{51} = C_{52} = C_{49}$	119.7 (7)
C20-C21-H21	119.4	C51—C52—H52	120.2
N2—C22—C19	112.9 (5)	C49 ⁿ —C52—H52	120.2
S3—Ni2—S1—C29	178.71 (17)	C24—C25—C27—C28	1.5 (8)
S2—Ni2—S1—C29	-0.22 (17)	C26—C25—C27—C28	-179.0 (5)
S4—Ni2—S2—C34	179.64 (18)	C23—N2—C28—C27	-1.4 (8)
S1—Ni2—S2—C34	0.82 (19)	C22—N2—C28—C27	175.8 (5)
S4—Ni2—S3—C35	-0.44 (18)	C25—C27—C28—N2	0.4 (9)

S1—Ni2—S3—C35	178.39 (18)	Ni2—S1—C29—C30	178.1 (4)
S3—Ni2—S4—C36	0.29 (18)	Ni2—S1—C29—C34	-0.6 (4)
S2—Ni2—S4—C36	179.22 (18)	C34—C29—C30—C31	-1.1 (8)
S6—Ni1—S5—C41	5.32 (18)	S1—C29—C30—C31	-179.8 (4)
S6 ⁱ —Ni1—S5—C41	-160.73 (17)	C29—C30—C31—C32	0.1 (9)
S6 ⁱ —Ni1—S6—C46	87.36 (18)	C30—C31—C32—C33	0.3 (10)
S5—Ni1—S6—C46	-5.65 (19)	C31—C32—C33—C34	0.4 (9)
S5 ⁱ —Ni1—S6—C46	-179.34 (19)	C32—C33—C34—C29	-1.4 (8)
S8 ⁱⁱ —Ni3—S7—C47	-3.25 (18)	C32—C33—C34—S2	177.6 (4)
S8—Ni3—S7—C47	176.75 (18)	C30—C29—C34—C33	1.8 (8)
S7—Ni3—S8—C50	176.17 (17)	S1—C29—C34—C33	-179.5 (4)
S7 ⁱⁱ —Ni3—S8—C50	-3.83 (17)	C30—C29—C34—S2	-177.3 (4)
C7—C2—C3—C4	1.5 (10)	S1—C29—C34—S2	1.4 (6)
C1—C2—C3—C4	179.9 (6)	Ni2—S2—C34—C33	179.5 (4)
C2—C3—C4—C5	-1.0 (11)	Ni2—S2—C34—C29	-1.5 (4)
C3—C4—C5—C6	0.4 (9)	Ni2—S3—C35—C40	179.4 (4)
C3—C4—C5—C8	-177.5 (6)	Ni2—S3—C35—C36	0.6 (4)
C4—C5—C6—C7	-0.4 (8)	C40-C35-C36-C37	0.5 (8)
C8—C5—C6—C7	177.5 (5)	S3—C35—C36—C37	179.4 (4)
C5—C6—C7—C2	1.0 (9)	C40-C35-C36-S4	-179.3 (4)
C3—C2—C7—C6	-1.5 (9)	S3—C35—C36—S4	-0.4 (6)
C1—C2—C7—C6	-179.9 (6)	Ni2—S4—C36—C35	0.0 (4)
C13—N1—C8—C5	-136.2 (6)	Ni2—S4—C36—C37	-179.8 (4)
C9—N1—C8—C5	48.6 (7)	C35—C36—C37—C38	-0.3 (8)
C6—C5—C8—N1	66.0 (6)	S4—C36—C37—C38	179.5 (5)
C4—C5—C8—N1	-116.1 (6)	C36—C37—C38—C39	-0.2 (10)
C13—N1—C9—C10	-0.4 (8)	C37—C38—C39—C40	0.4 (11)
C8—N1—C9—C10	174.9 (5)	C38—C39—C40—C35	-0.2 (10)
N1—C9—C10—C11	0.0 (9)	C36—C35—C40—C39	-0.3 (9)
C9—C10—C11—C12	0.2 (9)	S3—C35—C40—C39	-179.2 (5)
C9-C10-C11-C14	-179.4 (5)	Ni1—S5—C41—C46	-3.9 (4)
C10-C11-C12-C13	-0.2 (9)	Ni1-S5-C41-C42	175.7 (4)
C14—C11—C12—C13	179.5 (6)	C46—C41—C42—C43	1.0 (8)
C9—N1—C13—C12	0.4 (8)	S5-C41-C42-C43	-178.6 (4)
C8—N1—C13—C12	-174.8 (5)	C41—C42—C43—C44	-0.4 (9)
C11—C12—C13—N1	-0.2 (10)	C42—C43—C44—C45	-0.4 (9)
C21—C16—C17—C18	0.6 (9)	C43—C44—C45—C46	0.7 (9)
C15—C16—C17—C18	-179.1 (6)	C44—C45—C46—C41	-0.2 (8)
C16—C17—C18—C19	0.2 (8)	C44—C45—C46—S6	179.3 (4)
C17-C18-C19-C20	-1.0 (8)	C42—C41—C46—C45	-0.7 (8)
C17—C18—C19—C22	-178.8 (5)	S5-C41-C46-C45	178.9 (4)
C18—C19—C20—C21	0.9 (9)	C42—C41—C46—S6	179.8 (4)
C22—C19—C20—C21	178.8 (5)	S5-C41-C46-S6	-0.6 (6)
C17—C16—C21—C20	-0.7 (10)	Ni1-S6-C46-C45	-174.7 (4)
C15—C16—C21—C20	179.1 (6)	Ni1-S6-C46-C41	4.8 (4)
C19—C20—C21—C16	-0.1 (10)	Ni3—S7—C47—C48	-177.0 (4)
C28—N2—C22—C19	121.6 (6)	Ni3—S7—C47—C50 ⁱⁱ	1.9 (4)

C23—N2—C22—C19	-61.2 (7)	C50 ⁱⁱ —C47—C48—C49	0.5 (8)	
C20—C19—C22—N2	120.5 (6)	S7—C47—C48—C49	179.4 (4)	
C18—C19—C22—N2	-61.7 (7)	C47—C48—C49—C52 ⁱⁱ	-0.5 (9)	
C28—N2—C23—C24	0.4 (8)	Ni3—S8—C50—C51	-176.4 (4)	
C22—N2—C23—C24	-176.8 (5)	Ni3—S8—C50—C47 ⁱⁱ	3.7 (4)	
N2-C23-C24-C25	1.5 (9)	C47 ⁱⁱ —C50—C51—C52	0.6 (8)	
C23—C24—C25—C27	-2.4 (8)	S8—C50—C51—C52	-179.3 (4)	
C23—C24—C25—C26	178.1 (5)	C50—C51—C52—C49 ⁱⁱ	-0.6 (9)	
Symmetry codes: (i) $-x$, y , $-z+1/2$; (ii) $-x+1/2$, $-y+1/2$, $-z+1$.				

Hydrogen-bond geometry $(Å, \circ)$.

D—H···A	D—H	Н…Ч	D…A	D—H…A
C8—H8B····S4 ⁱ	0.97	2.846	3.721 (3)	150.63
Symmetry code: (i) $1/2 - 3$	x, y + 1/2, 1/2 - z.			

